Deep drawing of organic sheets made of hybrid recycled carbon and thermoplastic polyamide 6 staple fiber yarns

Author:

Goergen Christian1ORCID,Schommer Dominic1,Duhovic Miro1,Mitschang Peter1

Affiliation:

1. Institut für Verbundwerkstoffe GmbH, Kaiserslautern, Germany

Abstract

Fully impregnated fiber-reinforced thermoplastic sheets, or the so-called organic sheets, allow the thermoforming of parts within very short cycle times. This article describes the development of the next generation of organic sheet materials based on recycled carbon fibers and polyamide 6 staple fiber yarns. Regardless of the recycled nature of the fibers and an average fiber length of 25 mm, the organic sheets still reach a comparable level of the tensile strength and modulus of continuous fiber-reinforced organic sheets made of virgin CF with the same reinforcement structure. Due to the staple fiber yarn architecture, the organic sheets feature a deep-drawing ability of a total plastic deformation up to 50% in the fiber direction. The effect is enabled via an interfiber sliding when the organic sheet is processed in the molten condition. The creation of a finite element model for the thermoforming process simulation of the material is also presented. Predictions of the plastic strain distribution and its magnitude are shown to agree well with forming experiments where a curved geometry is formed to different depths.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Reference57 articles.

1. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties

2. Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook

3. Connor ML. Characterization of recycled carbon fibers and their formation of composites using injection molding. Master Thesis, North Carolina State University, North Carolina, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3