Tribological properties of PI-SiC nanocomposite prepared by hot dynamic compaction

Author:

He Runqin1,Niu Fenglian1,Chang Qiuxiang1

Affiliation:

1. School of Mechanical and Electrical Engineering, Ningbo Dahongying University, Ningbo, ZheJiang Province, China

Abstract

Wear resistance of polyimide/SiC (PI-SiC) nanocomposite prepared by hot dynamic compaction was investigated in this article. Mechanically milled micro-sized PI with different amounts of SiC nanoparticles (SiCnp), 0, 2.5, 5, 7.5, and 10 vol%, were used to fabricate the samples. Dynamic compaction was conducted at the strain rates of about 103s−1. The microstructural and mechanical behaviors of the samples, such as microhardness and stress–strain curves, were also investigated. The results showed improvement in the microhardness and compressive strength of the material. The results also revealed reduction in wear resistance as SiC reinforcing particles increased. The microstructural study of the worn surfaces indicated that the abrasive and delamination were the dominant wear mechanisms.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3