Morphology and rheology of PP/POE blends in high shear stress field

Author:

Ying Jiru12,Xie Xiaolin3,Peng Shaoxian1,Zhou Huamin4,Li Dequn4

Affiliation:

1. Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China

2. SINTEF Tel-Tek, Porsgrunn, Norway

3. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China

4. State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China

Abstract

Polypropylene (PP)/polyolefin elastomer (POE; ethylene–octene copolymer) blends with varying weight percentages of POE were prepared in a twin-screw extruder and molded through high shear rate injection-molding process. The morphologies and rheology of the PP/POE blends were systematically investigated based on rheological data and experimental analysis. The results indicate that the polymer blends of plastic and rubber in a high shear stress field result in a multilayered microstructure, which can be divided into skin, transitional, shear, and core layers according to the morphology of the dispersed phase. The morphology formation of the dispersed phase depends on the shear field and temperature field in the processing. Morphological evolution of the dispersed POE phases in PP matrix was described and quantified. A dragging ellipsoid model and capillary number were employed to describe the morphological evolution of the dispersed phase, and the morphological parameters were obtained. The results show that the dragging ellipsoid model is well suited to explain the morphological evolution of the dispersed phase in polymer blends molded under high shear rate.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3