Thermo-electrical postbuckling behavior of carbon nanotubes-reinforced composite beams with piezoelectric layers and tangentially restrained ends

Author:

Thinh Nguyen Van12,Tung Hoang Van3ORCID

Affiliation:

1. Faculty of Civil Engineering, University of Transport Technology, Ha Noi, Viet Nam

2. Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi, Viet Nam

3. Faculty of Civil Engineering, Hanoi Architectural University, Ha Noi, Viet Nam

Abstract

An analytical investigation on the buckling and postbuckling behavior of carbon nanotube-reinforced composite beams integrated with surface-bonded piezoelectric layers under uniform temperature rise is presented in this paper. Carbon nanotubes (CNTs) are reinforced into isotropic matrix through uniform distribution and functionally graded distributions. The properties of material constituents are assumed to be temperature-dependent and effective properties of CNT-reinforced composite are estimated using an extended rule of mixture. Equilibrium equations of the beams are established based on Euler-Bernoulli theory including von Kármán nonlinearity and solved using analytical solutions and Galerkin method. Critical temperatures and postbuckling load-deflection paths are determined using an iteration algorithm. Parametric studies are performed to examine the influences of CNT distribution and volume fraction, applied voltage, in-plane and out-of-plane conditions of the ends, slenderness, and thickness ratio of layers on the critical loads and postbuckling load carrying capacity of beams. Results reveal that CNT volume fraction and degree of in-plane ends constraint have slight and significant influences on the critical temperatures and thermal postbuckling paths, respectively. The study also finds that negative and positive voltages increase and decrease the thermal buckling temperatures of piezoelectric CNT-reinforced composite beams.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3