Post-yield fracture correlations to morphological and micromechanical response of poly(ε-caprolactone)-based biocomposites

Author:

Achla 1,Maiti Saurindra Nath1ORCID,Jacob Josemon1

Affiliation:

1. Centre for Polymer Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India

Abstract

The present work investigates the effect of jack wood flour (JWF) content on the fracture toughness, tensile, impact, and morphological behavior of the prepared green biocomposites. From 0 to 35 wt% (volume fraction ( Φf) = 0–0.34) of JWF was incorporated as a reinforcing biodegradable filler into poly(ε-caprolactone) (PCL) matrix by melt compounding in a twin screw extruder. The tensile modulus increases by 80.48% at the highest Φf = 0.34, though marginal increment (13.71%) in the yield strength was registered. A sharp reduction in notched Izod impact strength (85%) was observed with increasing JWF content. The fracture toughness of the prepared biocomposites based on post-yield fracture mechanics concept was investigated by essential work of fracture (EWF) methodology. Incorporation of JWF into PCL matrix diminishes the EWF ( we), while increasing the non-essential work of fracture ( βwp). In the biocomposites, principally two mechanisms governed the fracture deformation. Large JWF particles act as stress concentration points and favor the crack initiation, while the smaller particles favor fibrillation which arrests the crack propagation enhancing the parameter βwp at lower concentration of JWF. Freeze-fractured surfaces show a degree of phase adhesion at lower Φf of JWF. The phase adhesion parameter obtained from micromechanical analysis of tensile properties suggesting the mechanical interlocking and interaction between PCL and JWF.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3