Filler networking in the highly nanofilled systems

Author:

Kourki Hajir1,Mortezaei Mehrzad1,Navid Famili Mohammad Hossein1

Affiliation:

1. Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

Filler networking is considered as the most important parameter in controlling the mechanical and rheological properties of highly filled systems. Besides, the interparticle distance as a function of filler size and concentration seems to be the main parameter to govern the filler network strength or filler–filler interaction. In this article, considering the importance of filler networking, estimation of the interparticle distance for different values of filler size and concentration, investigation of the architecture of filler network in the nanocomposite for various filler sizes as well as analysis of the effects of filler size and concentration on the dynamic behavior of the filler networks are discussed and atomic force microscopic imaging is used to investigate the filler network parameters. In addition to the proposed filler network structure, the results suggest that the rheological properties of nanocomposites in the linear region could be related to the interparticle distance independent of filler size and concentration. On the other hand, by studying the linear and nonlinear viscoelastic properties of these highly filled systems, the results indicate that an increase in loss and storage modulus would occur by increasing the filler concentration and reducing the filler size.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3