Heat Transfer Analysis of Continuous Fiber/Thermoplastic Matrix Composites During Manufacture

Author:

Hwang S.J.1,Tucker C.L.2

Affiliation:

1. Graduate Research Assistant Department of Mechanical and Industrial Engineering University of Illinois, Urbana, IL 61801

2. University of Illinois, Urbana, IL 61801

Abstract

The thermal behavior of a continuous fiber/thermoplastic matrix composite laminate being cooled in a large steel mold is simulated using a finite element method. The heat released by crystallization is a small part of the total, and is treated approximately using a temperature-dependent specific heat. We present arguments and procedures for combining several lamina in one finite element to gain computational efficiency. Experi ments are carried out on flat panels of APC-2 in a compression mold with asymmetric cooling. The model accurately predicts temperature histories in the laminate. In our exam ple problem, heat transfer is dominated by the convective heat transfer coefficient in the cooling channel, the in-plane conductivity of the steel mold, and the thickness-direction conductivity of the composite. Fiber orientation in the composite has a negligible in fluence on the temperature history.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3