Effect of Flax/PP pellets’ morphology on the mechanical properties of injection-molded parts

Author:

Alsinani Nawaf1,Laberge Lebel Louis1ORCID

Affiliation:

1. Advanced Composites and Fibres Structures Laboratory, Centre de recherche sur les Systèmes Polymères et Composites à Haute Performance, Polytechnique Montréal, Montréal, QC, Canada

Abstract

Flax and polypropylene (PP) pultrudates of 4.76 mm in diameter were produced using a multi-die pultrusion system. The flax content was 50 vol.%. Pultrusion conditions were varied to produce four porosity content between 4% and 22%. The pultrudates were pelletized into lengths of 6 and 15 mm, and injection-molded with pure PP to reduce the part flax content to 25 wt.%. Results showed that well consolidated pultrudates, having porosities up to 8%, were more resilient to the pelletizing process such that the pellets remained structurally intact after the process. These pellets went smoothly through the hopper into the injection molding machine screw. Pellets with void content higher than 8% lost integrity during pelletizing leading to uniform mixing. Exposed fibers segregated from the polymer in the hopper leading to ununiform mixing. The highest mechanical properties improvement compared to pure PP was using 15 mm pellets that had a prorosity of 8%. The tensile modulus doubled at 4652 ± 113 MPa. The impact strength increased by almost five times at 10.5 ± 0.7  [Formula: see text]. 15 mm pellets provided 1.7 times the impact strength of the 6 mm pellets. These improvement are attributed to low flax fiber thermal degradation and improved fiber dispersion.

Funder

PRIMA Quebec

Natural Sciences and Engineering Research Council of Canada

Saudi Arabia’s Saline Water Conversion Corporation and Ministry of Education

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3