Foaming behavior of microcellular poly(lactic acid)/TPU composites in supercritical CO2

Author:

Xu Daifang1,Yu Kejing1,Qian Kun1,Park Chul B2

Affiliation:

1. Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, People’s Republic of China

2. Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada

Abstract

This article presents the effects of thermoplastic polyurethane (TPU) on the crystallization and melt strength of poly(lactic acid) (PLA) and on the enhancement of cell nucleation and expansion ratio to manufacture microcellular thermoplastic PLA foams in supercritical carbon dioxide. Addition of TPU increased the crystallinity and decreased the crystallite size as observed by differential scanning calorimetry and polarized optical microscope. The formed crystal domains worked as cross-linking points to increase the melt strength of a polymer that potentially affected the cell growth. Scanning electron microscope confirmed the immiscibility between PLA and TPU, and TPU was dispersed as islands in the PLA matrix. This phase morphology further influenced the cell structure of the PLA/TPU foams. TPU acted as a nucleating agent to enhance heterogeneous cell nucleation that is caused by the decrease in free energy barrier. Tensile stress that generated around the TPU and in some local regions surrounding the crystals and crystallization was dominant to induce cell nucleation.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3