Structure and properties of heat-resistant ABS resins innovated via MSAMI random copolymer

Author:

Hou BY12,Ren L12ORCID,Sun YN12,Zhang MY12,Zhang HX12

Affiliation:

1. School of Chemical Engineering, Changchun University of Technology, Changchun, China

2. Engineering Research Center for synthetic resin and special fiber, Ministry of Education, Changchun University of Technology, Changchun, China

Abstract

This work proposed an efficient method to synthesize acrylonitrile-butadiene-styrene (ABS) copolymer and α-Methylstyrene (α-MSt)/N-phenylmaleimide (NPMI)/Acrylonitrile (AN) (MSAMI) random copolymer via emulsion polymerization, aiming to combine the excellent heat resistance of MSAMI and numerous advantages of ABS resin including mechanical properties, processing and recyclability. The effects of the MSAMI content and α-MSt/AN ratio on the thermal performance, mechanical properties and the morphology of heat-resistant ABS were investigated by FITR, dynamic mechanical analyses (DMA), Vicat Softening Temperature (VST), Thermogravimetric Analysis (TGA) and Scanning Electron Microscope (SEM). As a result, the heat-resistant of ABS resin was obviously enhanced by MSAMI, and its glass transition temperature (Tg) could be extended with the increase of NPMI content. The Tg could reach 173°C when NPMI content was 20% at the same trend as the VST. Synthetically, the contradiction between the heat resistance and mechanical properties of ABS resin reached a good balance when the NPMI content was 15% and α-MSt/AN ratio was 69/31. In SEM, the fracture morphology of the heat-resistant ABS resin was gradually tended to be smooth with the increase of the NPMI content. Therefore, the MSAMI random copolymer was successful prepared, which provided insight for the synthesis of heat-resistant modifiers and promoted the potential application of heat-resistant modifiers in automobiles and aircraft.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3