Nanofiber veil applied in toughness enhancement of thermoplastic carbon fiber composites

Author:

Shi Mingjun1ORCID,Takahashi Shinya2,Takeno Akiyoshi2,Nakai Asami3

Affiliation:

1. Mechanical and Civil Engineering Division, Graduate School of Engineering, Gifu University, Japan

2. Department of Chemistry and Biomolecular Science, Gifu University, Japan

3. Department of Mechanical Engineering, Gifu University, Japan

Abstract

This study presents an experimental investigation on thermoplastic carbon fiber composite based on PMMA resin interleaved with Polyamide electrospun nanofiber veils. In particular, the effect of improving the interfacial adhesion of the resin to nanofiber and carbon fiber on the fracture behavior of the laminates and the corresponding fracture mechanism was studied by using different molar concentrations of functional monomer hydroxyethyl acrylamide (HEAA) for copolymerization with methyl methacrylate. The effectiveness of the nanoreinforce has been addressed by Mode-Ⅰ and Mode-Ⅱ tests. The results showed that the fracture toughness of Mode-Ⅰ decreased firstly and then increased with an increase in HEAA feed with 0–5 mol% due to the change of crack tip path accompanied by the bridging mechanism shifting, the best performance was founded in 5 mol% HEAA-copolymerized thermoplastic carbon fiber composites (CFRTP) samples (17.6% for initiation and 28% for propagation); whereas a characteristic of increasing firstly and then decreasing performed under Mode-Ⅱ loading due to the formation of multilayer microcrack in nano-toughing matrix layer, the 3 mol% HEAA-copolymerized CFRTP samples exhibited good improvement (137% for initiation and 147% for propagation).

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3