Preparation and characterization of UHMWPE/HDPE/MWCNT melt-blended nanocomposites

Author:

Khasraghi Samaneh Salkhi1,Rezaei Mostafa1

Affiliation:

1. Institute of Polymeric Materials, Polymer Engineering Department, Sahand University of Technology, Tabriz, Islamic Republic of Iran

Abstract

The nanocomposite blends of ultra-high-molecular-weight polyethylene (UHMWPE) and high-density PE (HDPE) reinforced with 1 wt% of multi-wall carbon nanotube (MWCNT) were prepared by melt mixing at different compositions in an internal mixer. Two different grades of HDPE were used in this research to improve the processability of UHMWPE. Rheological, thermal, morphological, and mechanical properties were investigated for both (UHMWPE/HDPE) blends and their nanocomposites. The results confirmed the reduction in melt viscosity and improvement in the processability of UHMWPE by the addition of HDPE. Differential scanning calorimetry (DSC) results showed a single melting and crystallization peak, and the broadness of these peaks in blends compared to pure components indicated that two components form separate crystals. The effect of incorporating MWCNT to the blend samples on mechanical properties was studied, and the samples prepared with HDPE 5218 exhibited slight improvement in mechanical properties. Incorporating MWCNT into the blend of UHMWPE (20 wt%) accelerated crystallization; but in higher contents of UHMWPE, crystallization of the composites was slightly delayed. Rheological data exhibited lower complex viscosity and storage modulus and therefore lower elasticity for UHMWPE/HDPE/MWCNT nanocomposites compared to their blends. Drop in viscosity and storage modulus as well as tensile strength of nanocomposites compared to their blends was attributed to adsorption of higher molar mass polyethylene chains onto MWCNT surface. The morphology of nanocomposites was analyzed by scanning electron microscopy (SEM) and phase separation, and probably localization of MWCNT predominantly into HDPE matrix and HDPE/UHMWPE interface was concluded. X-ray diffraction (XRD) patterns indicated that MWCNT was well distributed and dispersed in HDPE matrix.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3