On fabrication of acrylonitrile butadiene styrene-zirconium oxide composite feedstock for 3D printing-based rapid tooling applications

Author:

Ranjan Nishant1ORCID,Tyagi Rashi1ORCID,Kumar Ranvijay1ORCID,Kumar Vinay1

Affiliation:

1. Department of Mechanical Engineering and University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India

Abstract

The 3D-printed rapid tools are being used in finishing operations such as drilling, milling, broaching, roller burnishing, and other finishing operations that need anti-wear plastic composite materials. Zirconium oxide (ZrO2) is one of the ceramic materials which is highly appreciated due to its anti-wear properties. This study aims to develop the ZrO2 ceramic particles reinforced acrylonitrile butadiene styrene (ABS) thermoplastic composite feedstock filaments for 3D printing of rapid tools. In the first stage, the multiple numbers (as per Taguchi L9 orthogonal array (OA)) of ABS-ZrO2 feedstock filaments were developed by varying the loading of ZrO2 in ABS matrix (2 wt.%, 4 wt.%, and 6 wt.%), processing temperature (200, 205 and 210°C), and rotation speed of screw (4, 6 and 8 RPM). The optimum setting obtained for manufacturing ABS-ZrO2 composite feedstock filaments is the combination of 2% ZrO2 loading, 205°C processing temperature, and 6 RPM screw speed. In the next stage, fused filament fabrication (FFF) based 3D printing has been used to prepare the rapid tools. The wear test performed for 3D printed ABS-ZrO2 composites rapid tools shows only .62% weight loss which is lower as compared to virgin ABS (.91% weight loss). The results of the study are supported by fracture analysis, morphology, and mechanical properties.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3