Affiliation:
1. Department of Physics, University of Jordan, Amman, Jordan
2. Institute of Chemistry and Technology of Polymer (ICTP), CNR, Pozzuoli, Napoli, Italy
Abstract
The physical properties of polystyrene composites containing different concentrations of iron (0, 5, 10, 20 and 30 wt.%) were studied as a function of ultraviolet (UV) wavelength, iron concentration, temperature, and applied field frequency. The absorption spectra were collected using the UV-spectrophotometry, and the electrical results were determined using the alternating current (AC) impedance method. Analysis of the optical absorption spectra results showed that the transition of energy electrons is direct in k-space and the optical energy gap decreases with iron content. The impedance was measured in the frequency range 50 kHz–1 MHz and temperature range 30–110 C. It was found that the dielectric constant and the dielectric loss of the composites increase with iron concentration and decrease with the applied frequency. The AC conductivity of the composites increases with frequency, temperature, and iron concentration. The low value of the activation energies indicates that the composite of 30 wt.% of iron nearly becomes a conductive material.
Subject
Condensed Matter Physics,Ceramics and Composites
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献