Thermoforming-Stamping of Continuous Glass Fiber/Polypropylene Composites: Interlaminar and Tool–Laminate Shear Properties

Author:

Lebrun Gilbert,Bureau Martin N.1,Denault Johanne1

Affiliation:

1. Industrial Materials Institute, National Research Council Canada, 75 de Mortagne, Boucherville, Quebec, Canada, J4B 6Y4

Abstract

The results of interlaminar and tool–laminate shear tests performed on a twill 2 2 PP/glass fabric are described in this paper. The influence of the laminate temperature, pullout velocity and normal pressure on the interlaminar shear stress and friction coefficient are evaluated, as well as the effect of cooling the specimen from the melt to simulate real forming conditions. Opposite trends were observed for the variation of the shear stress and friction coefficient whether the tests were performed above the melt temperature of the matrix or above the crystallization temperature (135, 140, and 155 after cooling from the melt temperature. For the interlaminar shear tests, this was caused by the shift from an interlaminar to an intralaminar shear deformation mode occurring. For the tool–laminate shear tests, this was caused by the shift from matrix shear at the interface tool–laminate to direct Coulomb friction of the fibers with the tool with an increase of the normal pressure and/or an increase of the matrix viscosity with decreasing temperatures. Above the melt temperature of the matrix, the friction coefficient and shear stress were higher at the tool–laminate interface than in the interlaminar region while at temperatures close to the crystallization temperature they became lower at the tool–laminate interface. A summary of these observations is made and a discussion of their possible impact on the forming of parts is enlightened.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3