Investigation of enhancing effect of nano-montmorillonite on fire-retardant added low-density polyethylene–ethylene vinyl acetate hybrid system

Author:

Bee Soo-Tueen12,Hassan A2,Ratnam CT3,Tee Tiam-Ting1,Sin Lee Tin1

Affiliation:

1. Faculty of Engineering and Science, Department of Chemical Engineering, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia

2. Faculty of Chemical Engineering, Department of Polymer Engineering, Universiti Teknologi Malaysia, Johor, Malaysia

3. Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, Kajang, Selangor, Malaysia

Abstract

In this study, nano-montmorillonite (NMMT) was incorporated in alumina trihydrate (ATH) added low-density polyethylene–ethylene vinyl acetate (LDPE-EVA) for enhancing the mechanical and electrical properties of the hybrid blends. The Young’s modulus of 50 phr ATH added LDPE-EVA (LE) blends has improved significantly, when the NMMT loading level increased from 5 to 15 phr. This is because the intercalation of NMMT particles reduces the cavities while enhancing the interfacial adhesion between the particle surface and LE matrix as observed via morphology analysis. The good interfacial adhesion could effectively transfer the stress from polymer matrix to filler’s particles during straining and improved the mechanical properties. On the other hand, the volume resistivity of 5 phr added LE blends was gradually decreased as the loading level of ATH has increased from 50 to 150 phr. The surface and volume resistivity of LE blends exhibited that high polarity of ATH and NMMT molecules could increase the mobility of charges in passages through polymer matrix and surface. Thus, the incorporation of ATH and NMMT could reduce the electrical resistance of LE blends. In addition, the increasing of ATH loading level also improved fire resistivity of LE blends as indicated by the promising limiting oxygen index. This is because the endothermic reaction of ATH during combustion process could reduce the temperature of polymer blends while releasing water vapour and the formation of alumina char. Furthermore, the increasing of NMMT loading level in ATH-added LE blends was found to slightly increase the fire retardancy. This is due to the addition of NMMT that could promote the dripping characteristics and charring effect during combustion and subsequently improve the fire retardancy of ATH added LE blends.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3