Thermomechanically induced post-buckling analysis of functionally graded material plates with circular cut-outs resting on elastic foundations

Author:

Kumar Rajesh1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, NIET, NIMS University, Jaipur, Rajasthan, India

Abstract

Post-buckling analysis of functionally graded material (FGM) plates resting on Winkler and Pasternak elastic foundations subjected to thermomechanical loadings with circular cut-outs at centre and random material properties is presented. The material properties of each constituent’s materials, volume fraction index, thermal expansion coefficients, foundation stiffness parameters and thermal conductivities are taken as independent basic random input variables. The basic formulation is based on applying Reddy’s higher order shear deformation theory, which requires C1 continuous element approximation. A modified form C0 continuity is applied in the present investigation. A serum-free expansion medium with mean-centred first-order regular perturbation technique for composite plates is extended for FGM plates to solve the random eigenvalue problem. Typical numerical results are presented to examine the second-order statistics for effect of the volume fractions index, plate length-to-thickness ratios, plate aspect ratios, types of loadings, amplitude ratios, support conditions and various shape and size of holes with random thermomechanical properties. The results obtained by the present solution approach are validated with published papers and the robust method of simulation. It is found that the laminates with round cuts (FGM plates resting on Winkler and Pasternak elastic foundations) have a significant influence on the post-buckling response under Thermomechanical loading conditions. Present investigations are useful for the applications and further research.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3