A novel measurement approach based on optical coherence tomography for inline quality assessment of thermoplastic glass-fiber reinforced unidirectional tapes

Author:

Wenninger Michael1ORCID,Marschik Christian1,Felbermayer Karoline2,Heise Bettina2,Kranzl Thomas3,Steinbichler Georg4

Affiliation:

1. Competence Center CHASE GmbH, Linz, Austria

2. Research Center for Non-Destructive Testing RECENDT GmbH, Linz, Austria

3. Institute of Polymer Processing and Digital Transformation, Johannes Kepler University, Linz, Austria

4. Institute for Polymer Injection Molding and Process Automation, Johannes Kepler University, Linz, Austria

Abstract

Optical coherence tomography (OCT) has been found to be a powerful method for non-destructive testing of glass-fiber reinforced polymeric composites. Various authors have investigated the use of OCT in offline lab-scale detection of fiber orientation and defects in thermoset-based composites. This work evaluated the potential of OCT as a technique for detecting common defects in the continuous production of thermoplastic glass-fiber reinforced unidirectional (UD) tapes. Measurements were first conducted with a stationary OCT sensor using a spectral domain system to investigate: (1) insufficiently impregnated fiber regions, (2) unfilled gaps, (3) polymer accumulations causing fiber/matrix irregularities, and (4) rough tape surfaces. Optical microscopic analysis was used for validation. To overcome the limited maximum field of view of modern OCT setups, we then developed a novel inline test rig to accurately simulate process conditions and measure across the whole tape width. We show that OCT is a reliable method for acquiring cross-section information on tape quality both at the lab scale with a stationary sensor and inline with a sensor moving across the tape surface. Our OCT measurements were in excellent agreement with our offline microscopic investigations. OCT is a powerful, non-destructive and high-resolution method for quality assessment of glass-fiber reinforced UD tapes and has great potential for use in inline quality assurance systems.

Funder

Österreichische Forschungsförderungsgesellschaft

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3