The influence of processing conditions on the mechanical properties and structure of poly(ethylene terephthalate) self-reinforced composites

Author:

Andrzejewski Jacek1,Szostak Marek1,Bak Tore2,Trzeciak Miroslaw3

Affiliation:

1. Institute of Materials Technology, Poznan University of Technology, Poland

2. Comfil ApS, Denmark

3. MPTS sp. z o.o., Poland

Abstract

The self-reinforced composites based on poly(ethylene terephthalate) (PET) are relatively new materials, competitive to composites based on polymers from the group of polyolefins. The use of PET as a base material should be another step forward for this technology, taking into account the properties, price, and the recycling possibility of proposed composites. In this research work, the main subject was to assess the impact of processing conditions on the final properties of the PET self-reinforced composites (srPET). The examined samples were prepared by hot-compaction technique under variable thermal conditions. The input material was composed of PET resin and low-melting copolymer (LPET). The high tenacity PET fibers were used as reinforcement for PET copolymer matrix. Initially both materials were in the form of continuous fiber; they were woven into a hybrid yarn wherein the proportion of PET and LPET fibers was 50/50. The properties of this hybrid yarn were investigated by differential scanning calorimetry (DSC) analysis, where the hot-compaction process conditions were simulated. Composite samples were investigated using the dynamic mechanical analysis (DMA) and static tension tests. The structure of the composite was observed using the optical microscope. The obtained mechanical properties of such a composite are not comparable to commercially made composite sheets, in which overall properties are mostly higher.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3