In-situ temperature monitoring during rotary ultrasonic-assisted drilling of fiber-reinforced composites

Author:

Shard Abhinav1,Agarwal Raj2ORCID,Garg Mohinder Pal1,Gupta Vishal2ORCID

Affiliation:

1. Department of Mechanical Engineering, DAV University, Jalandhar, India

2. Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India

Abstract

Drilling polyetherimide composite is difficult due to the anisotropic and inhomogeneous structure of fiber and matrix. Drilling of fiber-reinforced composites is a thermo-mechanical friction procedure required in various aerospace and automotive applications. The major reason for component rejection during manufacturing processes is due to thermal damage and temperature elevation defects such as delamination and fiber pullout caused during drilling. This work aims to propose a rotary ultrasonic-assisted drilling technique for composite materials to reduce thermal damage using diamond-impregnated tools. The influence of drilling parameters such as rotational speed, feed rate, abrasive grit size, and ultrasonic power was monitored on temperature elevations. The temperature was monitored using thermocouples located at different distances of 1.0, 2.0, and 3.0 mm from the main drilled hole. The response surface methodology was used for the design of experiments during the drilling of composite material and optimization of process parameters was carried out using analysis of variance. Rotational speed and abrasive grit size were observed to have the highest contribution of 42% and 37% for temperature elevations respectively. It was witnessed that temperature increases with an increase in rotational speed, feedrate, and abrasive grit size. Increasing the ultrasonic power during drilling temperature can be minimized. The temperature elevations at the tool-composite interface can be reduced by leveraging the application of rotary ultrasonic-assisted drilling.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3