A novel Artificial Neural Network-based model for predicting dielectric properties of banana fiber filled with polypropylene composites

Author:

Doddashamachar Mahesh1ORCID,Sen Snigdha2,Nama Vasudeva Setty Raju1

Affiliation:

1. Department of Physics, Global Academy of Technology, Bangalore, India

2. Department of Computer Science and Engineering, Global Academy of Technology, Bangalore, India

Abstract

The objective is focusing on the prediction of dielectric properties of the polypropylene composites reinforced with banana fiber using an Artificial Neural Network (ANN). To prepare the composites in accordance with ASTM requirements, randomly oriented banana fibers were combined with polypropylene at volume fractions of 20%, 30%, 40%, and 50%. For these composites, the impedance analyzer was used to determine dielectric characteristics such as the dielectric constant, tan δ, and ac conductivity. To estimate the dielectric properties, an artificial neural network is used with a supervised training strategy. The data set was assembled using ReLU, sigmoid, and tanh, three activation functions. Forecasting the outcome variables used temperature, frequency, filler content, and polymer content as input factors. Comparing the model utilizing ReLU to the other two activation functions, the MSE value was 0.32, and the R2 value was 0.98. Dielectric parameter values from both experiments and ANN modeling show a similar pattern. The dielectric properties of fiber-reinforced polyester matrix composites can be accurately predicted using ANN, reducing the need for manual intervention.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3