Mechanical behaviors of composites made of natural fibers through environmentally friendly treatment

Author:

Sun Shuo1,Pillay Selvum1,Ning Haibin1ORCID

Affiliation:

1. Department of Mechanical and Materials Engineering, Materials Processing and Application Development Center, The University of Alabama at Birmingham, Birmingham, AL, USA

Abstract

Natural fiber reinforced composites have garnered significant interests as potential substitutes for conventional materials because of their eco-friendly attribute and favorable physical and mechanical properties. Typically the natural fiber undergoes chemical treatment before processing with the matrix to produce composites, however, the chemical treatment can have a negative impact on the environment. This research work presents an environmentally friendly treatment method for hemp fibers by using boiling water and shear force for specific time periods. The purpose of the treatment is to break down the technical fiber bundles into elementary fibers, which creates a fourfold increase in bonding surface area between the fibers and matrix. The change in fiber length and size before and after the debundling treatment were analyzed using optical microscope, confocal microscope, and scanning electron microscopy. The treated fibers were then made into mats through a wet-laid process and compression molded with low density polyethylene via film stacking. The effects of different fiber treatment variables, including debundling time, on mechanical properties were compared with composites reinforced with conventional alkali treated fibers. The results presented show that the composites reinforced by hemp fiber using the new treatment method have equivalent or improved tensile, flexural and impact properties than the composite reinforced with alkali treated fibers.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3