Investigation on the thermal insulation properties of lightweight biocomposites based on lignocellulosic residues and natural polymers

Author:

Nechita Petronela1,Ionescu Ştefania Miţa1

Affiliation:

1. Department of Environmental, Applied Engineering and Agriculture, Dunărea de Jos University of Galaţi, Galaţi, Romania

Abstract

Due to their advantages (low cost, non-toxic, biodegradable, abundant, low density and very good mechanical properties), the lignocellulosic residues were widely used in the last time as reinforcements in composite materials with applications in the building industry. Besides these wastes, expanded perlite (EP) and natural polymers are promising candidates for the building industry, based on their specific characteristics and economic advantages. In this article, the results are presented regarding the thermal insulation properties of composite materials based on EP and natural polymers (starch polymer matrix reinforced with lignocellulosic wastes). The samples of composite materials were obtained from the laboratory and characterized in terms of the main specific properties of building materials, such as thermal conductivity/resistance, water absorption capacity, apparent density and image analyses by scanning electron microscopy. The obtained results have highlighted the values for thermal conductivity of composite samples between 0.05 and 0.11 (W/mK), similar to those materials currently used in building thermal insulation.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3