Application of titanium dioxide nanorod (TNr)@SiO2 with low photocatalytic effect and high UV resistance in poly(vinyl chloride) film

Author:

Cheng Jianhao1,Shi Chen2,Dong Yubing3,Han Jian2ORCID

Affiliation:

1. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China

2. The Key Lab of Industrial Textile Material and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, China

3. Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, China

Abstract

Ultraviolet (UV) radiation has a detrimental effect on the outdoor lifetime of PVC film materials. TiO2 nanoparticles, as commonly used UV absorbers, still suffer from poor transparency, high photocatalytic effect, and poor dispersion in PVC matrix. To mitigate these effects effectively, titanium dioxide nanorod @ silicon dioxide (TNr@SiO2) was synthesized and used as an anti-UV aging agent for polyvinyl chloride (PVC). The agglomeration effects of TiO2 nanoparticles in PVC films were solved by synthesizing TNr, and the catalytic effects of TiO2 was reduced by growing SiO2 on the TNr surface. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectroscopy were utilized to demonstrate the excellent dispersion and low photocatalytic effects of the synthesized TNr@SiO2. Compared with pure PVC film, the color change of TNr@SiO2/PVC composite film is not evident after 800h of UV aging, and the retention of mechanical properties were 93.94%. Compared with TiO2/PVC, TNr@SiO2/PVC composite film has better transparency. Results show that TNr@SiO2 can maintain the properties of PVC better because the electrons of TNr@SiO2 are excited to form a positively charged hole after the absorption of UV light, and then the hole electron pairs are recombined and converted into thermal energy, which improves the durability of PVC. Therefore, this highly transparent TNr@SiO2/PVC composite film with low photocatalytic activity and high UV resistance will soon be applied in large-scale industrial production.

Funder

Zhejiang Province key construction universities - textile science group outstanding doctoral project

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The impact of glycol water exposure on PA6/GF30 properties;Journal of Thermoplastic Composite Materials;2024-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3