Electrical application of polyamide reinforced with old tire rubber (ground tire rubber)

Author:

Mujal-Rosas R1,Orrit-Prat J2,Ramis-Juan X3,Marin-Genesca M1

Affiliation:

1. Department of Electrical Engineering, EET-UPC, Terrassa, Spain

2. Department of Physics and Nuclear Engineering, ETSEIAT-UPC, Terrassa, Spain

3. Department of Thermal Machines-Engines, ETSEIB-UPC, Barcelona, Spain

Abstract

Mass production of tires and their subsequent storage after use is a serious environmental problem that is tried to be solved in various ways. One of these ways is the mixture of these old used tires (ground tire rubber (GTR)) with various thermoplastic and thermostable polymers. These blends are made by modifying the pretreatment the GTR is subjected to, the degree of devulcanization, the mixing or pressing conditions, etc. Later the mixtures are analyzed structurally and mechanically, looking for possible industrial applications for them. The present work aims to obtain materials suitable for the electric industry from the mixture of polyamide with old used tires (GTR), starting from the requirement of minimum recycling costs, that is using vulcanized GTR without any prior treatment but acting on the particle sizes with a simple and inexpensive screening. A novelty of this study is the large number of compounds analyzed, and the deep analysis these have been submitted to dielectric, mechanical, thermal and microstructure analyses to get a large number of variables in each test. Compounds were categorized as the three GTR particle sizes ( p < 200 μm, 200 <  p < 500 μm and p > 500 μm) and seven concentrations of GTR (0%, 5%, 10%, 20%, 40%, 50% and 70%), resulting in a total of 21 new compounds. In addition, in order to have the dielectric tests as much exhaustive as possible and to show the behavior of the compound under widely changing conditions, a wide range of temperatures (30–120°C) and frequencies (1 × 10−2 Hz to 3 × 106 Hz) were taken into consideration. All these data have provided an accurate characterization of the properties of the new compounds, and according to these results, possible electrical applications have been explored, with the requirement that they must comply with official regulations.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3