Comparative study on low velocity impact behavior of natural hybrid and non hybrid flexible thermoplastic based composites

Author:

Kumbhare Kartik S1,Mahesh Vishwas2ORCID,Joladarashi Sharnappa1,Kulkarni Satyabodh M1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Mangalore, India

2. Department of Industrial Engineering and Management, Siddaganga Institute of Technology, Tumkur, India

Abstract

The current study attempts to evaluate the low-velocity impact (LVI) behavior of jute and banana fiber-based hybrid and non hybrid green composites. The proposed composites are fabricated using compression moulding method with variety of positioning of layers namely jute-rubber-jute-rubber-jute (JRJRJ), banana-rubber-banana-rubber-banana (BRBRB), jute-rubber-banana-rubber-jute (JRBRJ) and banana-rubber-jute-rubber-banana (BRJRB). Thus developed composites are subjected to LVI testing using conical and hemispherical shaped impactor in drop weight impact testing machine and different impact velocities of 5 m/s, 10 m/s and 15 m/s. Based on the ability of the proposed composites to absorb energy, coefficient of restitution (CoR), energy loss percentage (ELP), and failure behaviour, the suggested flexible composites’ performances are assessed. The study reveals that JRJRJ composite exhibits better energy absorption capability and BRBRB exhibits least energy absorption capability compared to its counterparts. The damage study reveals that hemispherical impactor leads to more damage area due to its larger contact area whereas, conical impactor results in local penetration. Results reveals that inclusion of jute fiber as reinforcement results in better LVI properties compared to banana fiber. It is also clear that the presence of a compliant matrix improves energy absorption and damage resistance in flexible composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3