Surface-treated short sisal fibers and halloysite nanotubes for synergistically enhanced performance of polypropylene hybrid composites

Author:

Krishnaiah Prakash1,Manickam Sivakumar2,Ratnam Chantara Thevy3,Raghu MS4,Parashuram L4,Prashantha K5ORCID,Jeon Byong-Hun1

Affiliation:

1. Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea

2. Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Selangor, Malaysia

3. Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Selangor, Malaysia

4. Department of Chemistry, New Horizon College of Engineering, Bangalore, Karnataka, India

5. ACU-Centre for Research and Innovation, Faculty of Natural Sciences, Adichunchanagiri University, Mandya, Karnataka, India

Abstract

Polypropylene (PP) composites were prepared by reinforcing with suitable hybrid fillers such as short sisal fibers treated with an alkali and high-intensity ultrasound (HIU) and halloysite nanotubes (HNTs) modified with 3-aminopropyltriethoxysilane. The synergistic effect of surface-treated short sisal fibers and silane-grafted HNTs were systematically evaluated through morphological, mechanical, dynamic mechanical, and thermal characterization. Alkali and HIU treatments of short sisal fibers drastically enhanced the interaction between sisal fibers and silane-grafted HNTs, which improved the interfacial adhesion between the filler system and the PP matrix. Scanning electron microscopic images indicated the continuity and smoothness of the hybrid composite surfaces. Dynamic mechanical analysis confirmed improved interactions between the hybrid filler system and the matrix, leading to significantly enhanced storage modulus in the hybrid composites. Therefore, the interfacial adhesion between the fillers and the matrix plays a significant role in improving the mechanical, dynamic mechanical, and thermal properties of polymer composites.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3