Evaluation of Paulownia elongata wood polyethylene composites

Author:

Tisserat Brent1,Reifschneider Louis2,Joshee Nirmal3,Finkenstadt Victoria L4

Affiliation:

1. Functional Foods Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA

2. Department of Technology, College of Applied Science and Technology, Illinois State University, Normal, IL, USA

3. Agricultural Research Station, Fort Valley State University, Fort Valley, GA, USA

4. Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA

Abstract

Paulownia wood flour (PWF), a by-product of milling lumber, was employed as a biofiller and blended with high-density polyethylene (HDPE) via extrusion. Paulownia wood (PW) shavings were milled through a 1-mm screen and then separated via shaking into various particle fractions (600–≤74 µm) using sieves (#30–>#200 US Standards). The influence of a commercial coupling agent, maleated polyethylene (MAPE), used at various concentrations (0, 1, 3, 5, or 10% w/w) with HDPE and wood particles obtained from a #50-mesh sieve, is examined. Incorporation of high concentrations of MAPE (approximately 5%) in HDPE-PWF blends improved tensile strength compared to lower MAPE concentrations (≤3%). Particle size of wood significantly influenced the mechanical properties of the biocomposite. HDPE-MAPE blends containing smaller wood particles (<180 µm) had higher tensile strength than neat HDPE or blends containing larger particles (>300 µm). Young’s modulus for all HDPE-PWF-MAPE blends was 14–27% higher than that of neat HDPE. Generally, incubation of tensile bars of various HDPE-PWF blends in 95% humidity for 28 days reduced the mechanical properties approximately by 5%. Differential scanning calorimetry analysis showed a slight reduction in the percentage crystallinity among various HDPE-PW blends.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3