The effect of formulation and processing parameters on thermal stability of PVC/Poly(epichlorohydrin-co-ethylene oxide)/organoclay nanocomposites prepared by melt mixing

Author:

Moghri Mehdi1,Kalaee Mohammad Reza23,Abdouss Majid4,Koosha Mojtaba5ORCID

Affiliation:

1. Engineering Faculty, Polymer Engineering Department, Kashan Branch, Islamic Azad University, Kashan, Iran

2. Engineering Faculty, Polymer Engineering Department, South Tehran Branch, Islamic Azad University, Tehran, Iran

3. Nanotechnology Research Center, South Tehran Branch, Islamic Azad University, Tehran, Iran

4. Department of Chemistry, Amirkabir University of Technology, Tehran, Iran

5. Faculty of New Technologies and Aerospace Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

In this work, nanocomposites of polyvinyl chloride poly(epichlorohydrin-co-ethylene oxide)(ECO)/organoclay were prepared via melt processing and various parameters including nanoclay and rubber content (ECO) as well as rotor speed were tuned to find the optimum formulation for the highest thermal stability. The prepared products were characterized by X-ray diffraction as well as thermogravimetric analysis (TGA), derivative thermogravimetric (DTG) and differential thermal analysis XRD results showed that rotor speeds higher than 70 r/min are crucial for obtaining highly intercalated products with good thermal stability. From DTG analyses, it was observed that at lower concentrations of rubber, the rate of mass loss is higher which results in faster dehydrochlorination of the composite. The sample prepared with 2 phr OMMT, 30 phr rubber, and 70 r/min rotor speed showed the highest thermal stability. The selected nanocomposite showed the first weight loss at 294 [Formula: see text]. Results of this research showed that even a slight change in each parameter has a great influence on thermal properties of the nanocomposites. The hydrogen bonding mode between ECO and organoclay were estimated by theoretical calculations using GAUSSIAN software. From the obtained results, the miscibility of OMMT and ECO polymer is related to the hydrogen bonds which are more preferred at chlorine atom of ECO polymer.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3