Experimental investigation of tribological performance of 3D printed textured journal bearings for various polymers

Author:

Mourya Vishal1ORCID,Bhore Skylab P.1

Affiliation:

1. Mechanical Engineering Department, Rotor Dynamics and Diagnostics Lab., Motilal Nehru National Institute of Technology Allahabad, India

Abstract

In this study, the 3D-printed textured journal bearings (TJBs) are developed by fused deposition modelling (FDM) process with three different polymers such as ABS, PLA and nylon. For the study, the process parameters such as texture depth (TD), rotor speed (S) and load (L) are considered as input parameters. The experimental analysis of 3D-printed TJB is performed based on the response surface methodology (RSM). With the RSM technique, the influence of these input parameters on the tribological performance of 3D-printed TJBs. The tribological performance of 3D-printed TJBs are wear resistance (WR) and wear temperature (WT). Further, the GRA analysis is performed to evaluate the optimum value of these process parameters for ABS, PLA and nylon polymer. These results demonstrate that the wear resistance (WR) of TJBs is first increases with the texture depth and then starts decreasing. Among all the polymers, the ABS polymer is the most significant, and nylon is the least significant polymer for the 3D-printed TJBs. The maximum WR (i.e. 76.576 m/mm3) of 3D-printed TJBs is observed for the PLA polymer. Whereas, nylon provides the least WR (i.e. 9.572 m/mm3) of 3D-printed TJBs. At the optimal value of process parameters (TD = 1.5 mm, S = 500 r/min and L = 10N), the WR and WT of 3D-printed TJBs (for ABS polymer) are 62.126 m/mm3 and 323.75 K respectively.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3