Driving towards sustainability: A review of natural fiber reinforced polymer composites for eco-friendly automotive light-weighting

Author:

Skosana Sifiso John1,Khoathane Caroline1,Malwela Thomas2ORCID

Affiliation:

1. Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Pretoria, South Africa

2. Departmet of Physics, University of Limpopo, Sovenga, South Africa

Abstract

The automotive industry stands at a critical juncture, compelled by the imperative of sustainability to seek innovative materials for eco-friendly light-weighting. Natural fiber reinforced polymer composites (NFRPCs) have gained popularity due to their environmentally friendly nature and excellent engineering capabilities. This review paper comprehensively examines the landscape of NFRPCs in the context of automotive applications. Beginning with an overview of the ecological urgency and regulatory framework driving sustainable automotive materials, the review navigates through key advancements in NFRPC technology. The paper delineates the diverse array of natural fibers employed as reinforcements, elucidating their intrinsic properties, sources, and processing considerations. Concurrently, an in-depth analysis of various polymer matrices showcases their compatibility with different fiber types, emphasizing the critical interplay between fiber and matrix for optimal composite performance. A pivotal facet of this review manuscript lies in the rigorous evaluation of NFRPC performance across an array of metrics, including mechanical, thermal, and environmental considerations. Studies examining the interfacial interactions between natural fibers and polymers, as well as enhancements through additives and treatments, are critically assessed. Environmental and economic considerations are paramount in the quest for sustainable automotive materials. While economic evaluations delve into the viability and cost-effectiveness of widespread adoption, life cycle assessments and environmental impact analyses are evaluated to estimate the ecological footprint of NFRPCs. The paper also surveys current trends and prospects, offering insights into forthcoming innovations and directions for research. Therefore, this review article consolidates a comprehensive body of knowledge on NFRPCs for eco-friendly automotive light-weighting. By synthesizing findings from diverse studies, it provides a holistic perspective on the potential, challenges, and future trajectory of NFRPCs in the automotive sector.

Funder

Tshwane University of Technology

Publisher

SAGE Publications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3