Development and characterization of surface functionalized hierarchical carbon fiber reinforced hybrid polypropylene composites

Author:

Gogoi Rupam1,Manik Gaurav1ORCID

Affiliation:

1. Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur, India

Abstract

Light-weight hybrid composites of relevant industrial applications were prepared using surface functionalized hierarchical carbon fibers ( f-CF), silane treated hollow glass microspheres (HGM), and a blend of polypropylene (PP) and maleic anhydride-grafted-styrene ethylene butylene styrene as the base polymer matrix. The f-CF were prepared by coating amine functionalized carbon nanotubes onto silane treated CF using an ultrasonic assisted electrophoretic deposition technique to improve fiber-matrix interfacial adhesion. For hybrid composition of 20 wt.% f-CF and 10 wt.% HGM, the tensile strength and modulus improved by ∼141 and ∼536% over neat PP while flexural strength and modulus increased by ∼118% and ∼583% respectively. Impact strength of 11.06 kJ/m2 was obtained and uniform dispersion and distribution of f-CF and HGMs was observed in Scanning electron microscope (SEM) images. Desirable reduction in density and melt viscosity along with improvement in composite stiffness were observed due to addition of HGM filler. Compared to PP, the crystallization temperature increased by ∼12°C while a maximum decrease of ∼5°C in melting temperature was obtained for the hybrid composites. Crystallinity of the hybrid composites decreased with an evident β crystal formation brought in by the nucleation.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3