Synthesis and thermal decomposition kinetics of poly(methyl methacrylate)-b-poly(styrene) block copolymers

Author:

Guan Xinghua12,Ma Xiaoyan12,Zhou Hualong12,Chen Fang12,Li Zhiguang12

Affiliation:

1. Ministry of Education Key Laboratory of Space Applied Physics and Chemistry, School of Science, Northwestern Polytechnical University, Shaanxi Province, Xi’an, China

2. Key Laboratory of Polymer Science and Technology, School of Science, Northwestern Polytechnical University, Shaanxi Province, Xi’an, China

Abstract

Two diblock copolymers of poly(methyl methacrylate)- block-poly(styrene) with chlorine as terminal group (PMMA- b-PS-Cl) were synthesized via two-step atom transfer radical polymerization. The structures of the block copolymers were characterized by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and gel permeation chromatography. Thermal properties including glass transition temperature ( Tg) and thermal stability were studied by differential scanning calorimetry and thermogravimetric analysis (TGA), respectively. The block copolymers of PMMA- b-PS-Cl exhibited two glass transitions, which were attributed to the Tgs of PMMA and PS segments, respectively. According to TGA, thermal decompositions of PMMA macro-initiator and PMMA- b-PS-Cl block copolymers had two stages. The weight loss ratio in the second stage was more significant than that in the first stage, which may be attributed to the separation of the halogen atom from the terminal group and the formation of a double bond. The breaking down of the backbone dominates in the second stage in which the weight loss ratio was more than 70%, represented the main stage of pyrolysis. It was found that the introduction of the PS chain remarkably enhanced the thermal stability of the copolymer, thus endowing the block copolymers high activation energy for thermal decomposition. On the other hand, the remaining two pyrolysis procedures further indicated that thermodynamic mechanism didn’t change due to the introduction of PS segments.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3