Affiliation:
1. School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia 14300 Nibong Tebal, Penang, Malaysia
Abstract
The electrical resistivity and tensile properties of composites formed by the incorporation of metal powders such as aluminum (Al), copper (Cu), and iron (Fe) in a high-density polyethylene (HDPE) matrix are investigated. Results are presented for metal fillers content varying between 0 and 55% by volume. The effect of different types of filler and filler content on electrical and tensile properties of the composites is analyzed. As a result, it is found that the electrical resistivity properties of the composites are governed by the shape of the filler and the amount of filler content. In this study, it is found that the tensile strength is influenced by the shape of the filler, degree of crystallinity and the adhesion between metal fillers and polymer. For example, more metal filler loading results in filler agglomeration which reduces the adhesion between metal fillers and polymer and increases the metal-to-metal contacts, this subsequently reduces the strength of the composite materials. The Young's modulus of the composite systems seems to follow the normal trend of filled polymer composites, where in general the Young's modulus increases with increasing amount of filler loadings.
Subject
Condensed Matter Physics,Ceramics and Composites
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献