Affiliation:
1. Department of Chemical Sciences, Tezpur University, Napaam, India
Abstract
In this study, a biobased composite utilizing waste rice husk ash (RHA) and polyvinyl chloride in a 1:1 ratio was prepared. The composites were prepared in a solventless, green pathway of melt blending using green additives such as tannic acid-calcium oxide (TA–CaO) adduct as a heat stabilizer and epoxidized soybean oil (ESO) as green compatibilizer. The addition of graphene oxide (GO) nanomaterial into the composite improved the thermal, mechanical, chemical and flame resistance properties of the composite. Composite reinforced with 0.5 phr GO, improved the tensile, flexural and, shore D hardness by 34, 37, 14%, respectively. The homogeneous dispersion of the GO layer in reinforced composite was evident from the transmission electron microscopy (TEM) study. Composites with GO as nano reinforcement showed relatively higher flame retardancy due to the synergistic effect of GO and silicon present in RHA. The composite with 0.5 phr loading of GO showed overall improvement in properties among the composites. It is expected that the incorporation of waste RHA along with other renewable bioresource materials will improve biodegradability and decrease the production cost of the composite.
Subject
Condensed Matter Physics,Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献