Seasonal characterisation of municipal solid waste from Astana city, Kazakhstan: Composition and thermal properties of combustible fraction

Author:

Abylkhani Bexultan123,Aiymbetov Berik1,Yagofarova Almira123,Tokmurzin Diyar1,Venetis Christos4,Poulopoulos Stavros23,Sarbassov Yerbol123,Inglezakis Vassilis J23ORCID

Affiliation:

1. Green Energy and Environment Laboratory, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan

2. Chemical and Materials Engineering Department, Nazarbayev University, Astana, Kazakhstan

3. The Environment and Resource Efficiency Cluster, Nazarbayev University, Astana, Kazakhstan

4. Ingenieurgesellschaft Prof. Czurda und Partner mbH, Karlsruhe, Germany

Abstract

This study presents the results of a seasonal municipal solid waste composition campaign, that took place over the period of September 2017 to June 2018 in the capital city of Kazakhstan, Astana. Four sampling campaigns were conducted in order to identify the seasonal variation of municipal solid waste composition, recyclables and energy potential materials, such as combustible fraction, useful for the evaluation of waste-to-energy potential. The combustible fraction was analysed for thermal fuel properties, such as proximate and elemental analyses and gross calorific value. The results over the four different seasons showed that the average recyclable fraction of municipal solid waste on a wet basis of 33.3 wt.% and combustibles fraction was 8.3 wt.%. The largest fraction was the organics (47.2 wt.%), followed by plastic (15.4 wt.%) and paper (12.5 wt.%). Small seasonal variations were observed for organics, paper, plastic and glass fractions. The highest values were found in summer for the organic waste, in spring for paper and plastic and autumn for glass. The recyclables fraction showed an absolute seasonal variation of 5.7% with a peak in the winter season (35.4%) and the combustibles fraction showed a seasonal variation between 8.3 wt.% to 9.4 wt.%. Finally, the average calorific value of the combustible fraction was estimated to be 21.6 MJ kg-1 on a dry basis.

Funder

Nazarbayev University

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3