Failure analyses of unconfined CCWBM body in uniaxial compression based on central pressure variation

Author:

Du Xianjie12,Feng Guorui12,Guo Yuxia12,Qi Tingye23,Zhang Yujiang12,Guo Jun12

Affiliation:

1. College of Mining Technology, Taiyuan University of Technology, China

2. Shanxi Province Research Centre of Green Mining Engineering Technology, China

3. Institute of Mining Technology, Taiyuan University of Technology, China

Abstract

Cemented coal waste backfill material (CCWBM) is made of coal gangue, fly ash and cementitious materials. It has been widely used in the field of backfill mining to control surface subsidence and protect the environment. A large number of unconfined backfill bodies without lateral support are formed in partial backfill mining. To study the failure characteristics of unconfined CCWBM body in partial backfill, the stress–strain curves of the CCWBM were obtained by uniaxial compression tests at different ages (1–28 d). The central pressure was measured by the embedded pressure sensors. The failure characteristics of the specimen were monitored by acoustic emission (AE) positioning technique. Three observations can be made. 1. The central pressure variation curves lag behind the mean stress change curves. The central pressure curve can be divided into three stages: slow increase stage, rapid growth stage and decline stage. It has two pressure manifestations: early appearance and peak appearance. They can be as the failure precursor and instability critical, respectively. 2. The specimen forms a central elastic bearing area in the process of compression. The plastic area develops to the inner side with the increase of pressure, and an upper and lower compound cone-shaped residual area is finally formed. 3. The embedded pressure sensor can be used to monitor the instability of the unconfined backfill body. The research results can provide guidance for the in-situ stability monitoring and reinforcement of unconfined CCWBM body in partial backfill.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3