Optimisation of process parameters of a thermal digester for the rapid conversion of food waste into value-added soil conditioner

Author:

Kumar Nitin1,Gupta Sunil Kumar1ORCID,Yadav Brahmdeo2

Affiliation:

1. Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India

2. Birsa Institute of Technology, Sindri, Dhanbad, Jharkhand, India

Abstract

A novel thermal digester for converting food waste (FW) into nutrient-rich soil conditioner was designed and explored. The process variables, that is, temperature, the volume of the digestion chamber and the rotational speed of the digester were optimised using response surface methodology (RSM). The study revealed that the digester temperature of 150°C and rotational speed of 40 RPM required minimum time (180 minutes) for attaining the equilibrium moisture with a minimum energy consumption of 0.218 kWh kg−1. The process resulted in 80 ± 2.5% reduction in total volume of the FW. Detailed characterisation revealed that the end product was comparable to the organic fertiliser as per the Fertiliser Association of India norms. The digestion helps in breakdown of cellulose content of FW into hemicellulose which supports formation of primary and secondary walls, seed storage carbohydrates, and facilitates plant growth. 1H-Nuclear magnetic resonance (1H-NMR) spectra of the end product revealed mineralisation of organics during digestion. Decrease in ultraviolet (UV) absorbance value at 280 nm also revealed the humification of the end product. X-ray diffraction (XRD) analysis disclosed extremely low crystallinity and non-recalcitrant nature of the end product. A low humification index value (HI-3.43), high fertilising index (FI-4.8), and clean index (CI-5.0) revealed that the end product could safely be utilised as an organic fertiliser. The cost–benefit analysis revealed that thermal digestion technique is profitable and economically viable with benefit–cost ratio (BCR) of 1.35. The study offers a unique approach for the rapid and hassle-free production of value-added soil conditioner from FW.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3