Approaching a zero-waste strategy by reuse in New York City: Challenges and potential

Author:

Lugo Michael1ORCID,Ail Snehesh Shivananda1ORCID,Castaldi Marco J1

Affiliation:

1. Department of Chemical Engineering, The City College of New York, USA

Abstract

In New York City (NYC), the aspiring target of zero waste to landfills is robustly engaging the often poorly understood solid waste management technique of reuse. The reuse activities occurring in NYC are reported, accounting for the quantities of reuse of various products, such as furniture, appliances and automobile accessories, amongst others. The quantities of products are translated to reuse mass and net CO2-eq emissions saved as a consequence of reuse. This quantitative assessment employs the Reuse Impact Calculator (RIC), based on the Waste Reduction Model (WARM). The RIC is a novel calculator used to quantitatively assess the environmental impact of material reuse. It uses the information about the material to be reused from the WARM database and estimates the emissions and energy savings based on the product’s final destination, that is, reuse, landfill, recycle or composting. A close monitoring of reuse activities in NYC shows 45 × 106 kg of reuse occurring for different products that would otherwise be directed to landfills. The net emissions reduced annually by reuse is approximately 122 × 106 kg of CO2-eq. This article compares the NYC reuse activities with that occurring in some select cities of the world. It is shown that the maximum recycle potential is saturated at 66%, and only auxiliary strategies like reuse can achieve the zero waste to landfill ambitions. Furthermore, this work discusses the role of reuse in the circular economy, wherein the resource utilization is maximized by increasing the shelf life of the product, and thereby enabling a maximum reuse potential.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3