An initial appraisal of waste decomposition by microbial processes within roadside gully pots

Author:

Scott Karen M1,Coulthard Thomas J1,Adams John DW2

Affiliation:

1. Department of Geography, University of Hull, Hull, UK

2. Environmental Technologies Centre for Industrial Collaboration, University of Hull, Hull, UK

Abstract

Despite their importance in urban drainage systems, gully pot internal processes have received little scientific study. Therefore, gully pot contents were examined to gain a basic understanding of these processes and to establish the decomposition characteristics of the contents ex situ. Moisture content, organic matter content, enzyme activity and pH were measured to investigate seasonal and geographical effects, in addition to a 5-week composting trial to determine the rate and characteristics of decomposition. Little difference was observed in the content processes, especially between seasons, and the composting trial illustrated organic content decreased at an average rate of 0.1 g of organic matter per 13 g of organic matter per day. The results from this study indicate an as yet unknown initial decomposition rate. Activity monitored between gully pots also suggests they are relatively similar systems across space and time; enabling gully contents to be evaluated universally in future research.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3