Environmental assessments of biological treatments of biowaste in life cycle perspective: A critical review

Author:

Vieira Victor Hugo Argentino de Morais1ORCID,Matheus Dácio Roberto1

Affiliation:

1. Centre of Engineering, Modelling and Applied Social Sciences, Environmental Science and Technology Graduate Program, Federal University of ABC, Santo André, Brazil

Abstract

Municipal biowaste is a major environmental issue. Life-cycle assessment is a valuable tool to assess recycling options, and anaerobic digestion and composting have performed adequately. However, reviews indicate several discrepancies between studies. Thus, we critically review 25 life-cycle assessments of the composting and anaerobic digestion of municipal biowaste. Our objective is to identify decisive factors, methodological gaps and processes that affect environmental performance. We generally identified methodological gaps in expanding systems borders. In energy systems, the replaced energy source did not consider power generation or dynamic regulation. All studies adopted mixed energy sources or marginal approaches. Agroecosystems included the carbon sequestration potential and compensation for the production of synthetic fertilizers only. A limited range of scientifically proven benefits of compost use has been reported. In general, studies provided a limited account of the effects of use on land emissions, but contradictory assumptions emerged, mainly in modelling synthetic fertilizer compensation. Only three studies compensated direct emissions from the use of synthetic fertilizers, and none included indirect emissions. Further studies should include an analysis of the additional benefits of compost use, compensate for the effects of emissions from synthetic fertilizer use on land and mix attributional and consequential approaches in energy system expansion.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3