Scaling up resource recovery of plastics in the emergent circular economy to prevent plastic pollution: Assessment of risks to health and safety in the Global South

Author:

Cook Ed1,Velis Costas A1ORCID,Cottom Joshua W1

Affiliation:

1. School of Civil Engineering, University of Leeds, Leeds, UK

Abstract

Over the coming decades, a large additional mass of plastic waste will become available for recycling, as efforts increase to reduce plastic pollution and facilitate a circular economy. New infrastructure will need to be developed, yet the processes and systems chosen should not result in adverse effects on human health and the environment. Here, we present a rapid review and critical semi-quantitative assessment of the potential risks posed by eight approaches to recovering value during the resource recovery phase from post-consumer plastic packaging waste collected and separated with the purported intention of recycling. The focus is on the Global South, where there are more chances that high risk processes could be run below standards of safe operation. Results indicate that under non-idealised operational conditions, mechanical reprocessing is the least impactful on the environment and therefore most appropriate for implementation in developing countries. Processes known as ‘chemical recycling’ are hard to assess due to lack of real-world process data. Given their lack of maturity and potential for risk to human health and the environment (handling of potentially hazardous substances under pressure and heat), it is unlikely they will make a useful addition to the circular economy in the Global South in the near future. Inevitably, increasing circular economy activity will require expansion towards targeting flexible, multi-material and multilayer products, for which mechanical recycling has well-established limitations. Our comparative risk overview indicates major barriers to changing resource recovery mode from the already dominant mechanical recycling mode towards other nascent or energetic recovery approaches.

Funder

Direktoratet for Utviklingssamarbeid

Tearfund

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Reference271 articles.

1. 60 Minutes Australia (2019) Exposing Australia’s recycling lie. Available at: https://youtu.be/lqrlEsPoyJk (accessed 28 June 2022).

2. Using waste plastic bottles as additive for stone mastic asphalt

3. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies

4. Aliño M, Moon D, Tangri N, et al. (2022) Chemical Recycling of Sachet Waste: A Failed Experiment. Berkeley, CA: Global Alliance for Incinerator Alternatives. Available at: https://www.no-burn.org/unilever-creasolv/.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3