Photovoltaic-driven electrochemical remediation of drilling fluid wastewater with simultaneous hydrogen production

Author:

Dermentzis Konstantinos12,Karakosta Kokkoni12,Kokkinos Nikolaos12,Mitkidou Sophia12,Stylianou Marinos34,Agapiou Agapios3ORCID

Affiliation:

1. Department of Chemistry, International Hellenic University, Kavala, Greece

2. Hephaestus Advanced Laboratory, International Hellenic University, Kavala, Greece

3. Department of Chemistry, University of Cyprus, Nicosia, Cyprus

4. Environmental Conservation and Management Programme, Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus

Abstract

In this work, we studied the application of photovoltaic solar energy for driving the electrochemical processes of electrocoagulation and electrooxidation to remediate drilling fluid wastewater, and simultaneously harvest energy in the form of electrolytic hydrogen gas produced at the cathode. The electrocoagulation was performed with sacrificial aluminium electrodes and electrooxidation with dimensionally stable boron-doped diamond electrodes in batch-wise and continuously operated mode, and their efficiency in both pollutants removal and hydrogen gas production was elucidated. The parameters affecting the efficiency of the applied electrochemical processes, such as applied current density, pH, electroprocessing time and flow rate, were investigated. The electrochemical processing was monitored by measuring the chemical oxygen demand (COD) of treated wastewater. The electrocoagulation treatment conducted with current densities of 30, 60 and 90 mA/cm2 reduced the wastewater COD by about 67%, whereas the electrooxidation treatment at the same conditions yielded a COD removal of over 95%. The amount of produced hydrogen was 171 L/g COD removed from treated wastewater.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3