Measurement of the NOx reduction effect on food wastewater during waste incineration

Author:

Lee Young-Jin1,Kang Jun-Gu1ORCID,Kwon Young-Hyun2,Ko Young-Jae3,Lee Won-Seok1

Affiliation:

1. Environmental Resources Research Department, National Institute of Environmental Research, Incheon, South Korea

2. Measurement Analysis Department, Wonju Regional Environment Agency, Wonju-si, Gangwon-do, South Korea

3. Air Environment Management Team, Geumgang Basic Environment Agency, Daejeon, South Korea

Abstract

Incineration is the most effective method for reducing the increasing waste volume. However, as the pollutants generated during incineration may cause secondary pollution, blocking them in advance is necessary. During incineration, prevention facilities are operated to reduce the amount of pollutants. Conventional selective non-catalytic reduction (SNCR) reduces nitrogen oxides (NO x) by injecting ammonia and urea as reducing agents. In this study, the NO x reduction effect on food wastewater (FW) was examined. In addition, the removal efficiency was compared at different concentrations of urea mixed with FW. When different concentrations of urea were injected in SNCR facilities A, B and C, NO x removal efficiencies of up to 75% were observed; with FW injection only, removal efficiency was 56%; and when both urea and FW were injected, removal efficiency was up to 79%. Although FW showed a lower NO x removal efficiency than urea, injecting both increased the efficiency. In addition, when air pollutant emissions and the incinerator temperature were analysed, we found that they could be managed without exceeding the allowed limits. However, for the injection and incineration of reducing agents, the characteristics of the incineration facility and reducing agents must be considered.

Funder

national institute of environmental research

ministry of environment

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3