Impact of food waste fraction in municipal solid waste on sorption of heavy metals

Author:

Onay Turgut T.1,Copty Nadim K.1,Demirel Burak2,Bacioglu Asiye1

Affiliation:

1. Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey

2. Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey,

Abstract

The presence of organic materials plays an important role in the fate of heavy metals that are co-disposed together with municipal solid wastes. As a part of an on-going research project, which aims to find out the most effective attenuation mechanism of heavy metal removal in landfills, sorption batch experiments were performed to assess the sorption behaviour of iron, copper, nickel and zinc on synthetic solid wastes containing 76% (W1) and 45% (W2) food waste percentages and waste-to-solution ratios ranging from 1:4 to 1:16. The analysis of sorption data suggested that the data fit a Freundlich equilibrium isotherm. The time required for reaching equilibrium conditions varied for each metal investigated, but all generally reached equilibrium conditions within 7 h. For both solid waste compositions, metal sorption increased with increase in waste-to-solution ratio, with the order of metal removal percentages consistently found to be Zn > Ni > Cu > Fe. The results also show that a large fraction of the heavy metals could be attenuated by sorption on the solid waste. The removal percentages for Zn and Ni were slightly higher for W2, whereas the removal percentages for Fe and Cu were approximately equal for both waste types. Overall, this study demonstrates that sorption is a viable process that can mitigate the potential adverse impacts of landfill leachate.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3