Experimental evaluation of the influence of combined particle size pretreatment and Fe3O4 additive on fuel yields of Arachis Hypogea shells

Author:

Olatunji Kehinde O1ORCID,Madyira Daniel M1,Ahmed Noor A1,Ogunkunle Oyetola1

Affiliation:

1. Department of Mechanical Engineering Science, Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa

Abstract

A smart energy recovery process can achieve maximum energy recovery from organic wastes. Pretreatment of feedstock is essential to biogas and methane yields during the anaerobic digestion process. This work combined particle size reduction with Fe3O4 nanoparticles to investigate their influence on biogas and methane yields from anaerobic digestion of Arachis hypogea shells. Twenty milligrams per litre of Fe3O4 nanoparticles was implemented with 2, 4, 6 and 8 mm particle sizes and a single treatment of Fe3O4 for 35 days. The treatments were compared with each other and were discovered to significantly ( p < 0.05) enhance biogas yield by 37.40%, 50.10%, 54.40%, 51.40% and 35.50% compared with control, respectively. Specific biogas yield recorded was 966.2, 1406, 1552.7, 1317.4, 766.2 and 413 mL g−1 volatile solid. This study showed the combination of Fe3O4 with 6 mm particle size of Arachis hypogea shells produced the optimum biogas and methane yields. The addition of Fe3O4 to particle sizes below 6 mm resulted in over-accumulation of volatile fatty acids and lowered the gas yield. This can be applied on an industrial scale.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3