Characterization and Leaching of Coal Fly Ash

Author:

Gutiérrez Beatriz1,Pazos Carmen1,Coca José1

Affiliation:

1. Department of Chemical Engineering, University of Oviedo, 33071 Oviedo, Spain

Abstract

Physical characteristics, chemical composition and leaching behaviour of a waste fly ash from a coal-fired power station are reported. Particle size distribution was studied by the following techniques: sedimentation in a liquid medium; sedimentation in an air flow; and Fraunhofer diffraction of a laser beam. Results obtained by the different methods are in good agreement. Mineralogical content and chemical composition were determined by X-ray diffraction, electronic microprobe and X-ray fluorescence. Acid leaching of the samples was investigated, using the following strong acids in sequence: HCl + HNO3, H2F 2, HClO4. Analysis of leachates by atomic absorption shows trace metals In, Tl, Ge, Cu, Ga, Pb, Ni, Co, Mn, Cd, Zn, Cr. In this work fly ashes from a Spanish power plant are characterized according to the type of particles, size distribution and chemical composition by means of physical methods. Three particle size fractions are leached by acids and analysis of trace elements in the leaching liquor is carried out. The concentration of trace metals is somewhat higher in the particles of smallest size.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gallium, Indium, and Thallium;Patty's Toxicology;2023-12-22

2. Hydrochloric Acid Leaching of Philippine Coal Fly Ash: Investigation and Optimisation of Leaching Parameters by Response Surface Methodology (RSM);Sustainable Chemistry;2022-02-01

3. Germanium: A review of its US demand, uses, resources, chemistry, and separation technologies;Separation and Purification Technology;2021-11

4. Characterization of fly ash using different techniques: A review;ADVANCED MATERIALS AND RADIATION PHYSICS (AMRP-2020): 5th National e-Conference on Advanced Materials and Radiation Physics;2021

5. Synthesis of Zeolite A, X and P from a South African Coal Fly Ash;Advanced Materials Research;2012-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3