Simulation and prediction of the effect of aeration, recirculation and degradation on landfill temperature in aerobic operation

Author:

Li Ruoxin12ORCID,Liu Lei134,Ding Qianshen15,He Chao6,Hou Juan7,Gao Tengfei15

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China

2. University of Chinese Academy of Sciences, Beijing, China

3. IRSM-CAS/HK Poly U Joint Laboratory on Solid Waste Science, Wuhan, China

4. Hubei Province Key Laboratory of Contaminated Sludge & Soil Science and Engineering, Wuhan, China

5. School of Civil Engineering, Liaoning Technical University, Fuxin, China

6. Shenzhen Metro Construction Group Co., Ltd., Shenzhen, China

7. Department of Civil Engineering, Shanghai University, Shanghai, China

Abstract

Much heat is released in aerobic landfills, which leads to temperature change. Quantitative prediction of temperature change with time and space is essential for the safe aerobic operation of landfill. In this article, based on the theory of porous media seepage mechanics and heat transfer, a seepage–temperature coupling model considering aeration, recirculation and degradation was established, which included internal energy change, heat conduction, convection and heat transfer. Moreover, combined with the long-time on-site monitoring temperature data from Wuhan Jinkou Landfill, the model’s reliability was preliminarily verified. Sensitivity analysis was carried out for aeration intensity, aeration temperature, recirculation intensity and recirculation temperature. Among the four factors, recirculation intensity influences the peak temperature most with a decrease of 20.11%. Compared with Borglin’s and Hao’s models, it is found that waste should not be assumed as a cell for temperature prediction. By comparing the results of Non-linear Ascent Stage model, Linear Ascent Stage model and Absent Ascent Stage model, it showed that the temperature difference of the three models decreases with the increase of operation time. In addition, the time point of peak temperature, t0, affects the temperature distribution. The above results provide a reference for predicting the spatial and temporal distribution of temperature and regulations for long-term aerobic landfill operations.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3