Removal of refractory organics from landfill leachate by in situ electrogenerated H2O2 combined with an Fe0 Fenton-like process

Author:

Li Zhiheng1,Bai Jie1,Li Yihui1,Wang Fan12ORCID

Affiliation:

1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, China

2. College of Environmental Science and Engineering, China West Normal University, Nanchong, China

Abstract

Landfill leachate contains a large amount of refractory organic matter, which will cause harm to the environment if not appropriately treated. In this study, the refractory organic matter in landfill leachate has been treated by in situ electrogenerated H2O2 combined with an Fe0 Fenton-like process, aiming to explore a cleaner and more efficient process for leachate treatment. The results showed that the current, initial pH and oxygen flow rate have significant influences on H2O2 production. The current and oxygen flow rate are positively correlated with H2O2 production, and neutral conditions are more favourable. Under the conditions of a current of 200 mA, an initial pH of 7.0 and an oxygen flow rate of 0.3 L/min, H2O2 production reached 2.81 mM, the current efficiency was close to 80% and the highest removal efficiency of organic matter reached 40.70%. The absorbance at 280 nm ( E280) decreased from 0.1669 to 0.1180, and the ratios E240/ E420, E250/ E365 and E300/ E400 in the UV and visible regions changed from 0.7825, 5.4492 and 0.2422 to 1.3135, 7.3745 and 0.2966, respectively. The maximum fluorescence intensities due to humic-like acid and fulvic-like acid substances decreased from 1275 and 1246 to 595.9 and 711.0, respectively. Spectral analysis further showed that the complex structure of refractory organic matter in the landfill leachate was obviously destroyed, and the relative content of humus decreased significantly. This study may provide a theoretical basis for the effective treatment of refractory organic matter in landfill leachate by in situ electrogenerated H2O2 combined with a Fenton-like process.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3