Affiliation:
1. Instituto de Diseño y Métodos Industriales, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia, Chile
2. Laboratorio de Cronobiología del Desarrollo. Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
Abstract
The industrial mussel processing generates significant quantities of waste. Nearly 30% of one metric tonne of processed mussel is finally destined for human consumption. Regardless of the mussel commodities, an important quantity of waste is concentrated at several sub-processes, such as input reception, washing and declumping shells, and mussel meat extraction stages, or by means of the rejection of mussels only due to a size characteristic criterion established by the target market. Despite the main segregated waste comprising shells, byssus threads, residual meat and wastewater, a heterogeneous composition must be taken into account, since much of the solid waste is commonly gathered and compacted for landfill transportation purposes. This paper reviews the sustainable management strategies for mussel by-products, addressing their limitations for an industrial implementation to obtain value-added products. It is concluded that, although there is a well-known diversity of waste sustainable management alternatives, several proposed products (e.g., collagen, bio-adhesives, biopolymer, and adsorbent for pollutants) still remain in a potential framework, circumscribed into laboratory results, subject to an optimization process, to a validation by industrial pre-scale trials, or even limited by the associated production costs. Future researches should focus on reducing the uncertainties linked with their technical–economic feasibility for an industrial scale development.
Subject
Pollution,Environmental Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献